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Partial Fraction Evaluation by an Escalation 
Technique 

By J. F. Mahoney 

Abstract. An escalation method for performing partial fraction expansions is presented for 
the case that the complete list of zeros of the denominator of the proper rational function is 
known. Expressions for the number of divisions and multiplications required are developed. 
The new method requires fewer such arithmetic operations than do other known methods. A 
numerical example is provided. 

Introduction. At times it is desired to express a rational function in terms of 
partial fractions. After completely factoring the denominator polynomial into 
linear factors it is conceptually easy to perform the expansion, but more efficient 
methods of carrying out the calculation are always welcome. Particular attention is 
directed to the situation where the linear factors of the denominator occur 
repeated. The partial fraction expansion technique that is presented here is efficient 
relative to the number of arithmetic operations required. It compares favorably in 
this regard with method B of Henrici [2, p. 555]. 

The Escalation Process. Consider the proper rational function 

(1) +(X) = P(X) 
Q(X)(X _ 4.)AI(X _-bB 

where t # (, A and B are integers greater than zero, and P(x) and Q(x) are 
polynomials for which neither t nor (bare zeros. In terms of partial fractions, 

A-1 C B Cbi 

(2) E ai . + X(x). 
i= 1 (X -) i=1 (X - 

0b) 

Here and in other parts of this paper a summation is taken to vanish if its upper 
limit is less than its lower limit. A related function +(x) has the definition and 
partial fraction expansion given by 

AA B 6 
(3) ~~~~~~(x C~6ai Cbi 

(3) f()=( ()=E) ,+ x(x) 

In going from +(x) to O(x) the power of (x - t) in the denominator was increased 

by unity. For this reason those A partial fraction coefficients represented by Cai are 

called the native coefficients of (3). All other partial fraction coefficients of (3) (the 

Cbi and those contained in x(x)) are called alien coefficients. What follows will 
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explore and exploit the conjecture that the partial fraction coefficients (both native 
and alien) of (3) may be computed from their counterparts in (2). 

First consider the equation 

(4) (X _ 
ta)A +0(X) = (X _ a)A 

and the (A - 2) equations obtained through repeated differentiation with respect 
to x (if A = 1, or 2, no differentiation is indicated). When x is set equal to t one 
finds that 

(5) Cai = Ca,iJ-i i 2,3,.. ,A. 

No information is gained concerning Cal. 
Next consider 

(6) (x - 0b)B+(X) = (X - Wb)B(X - (a)+(X) 

and the (B - 1) equations obtained through successive differentiation. Upon 
setting x = (b one finds that 

(7) CbCB b _a 

and 

(8) Cbi= - C B - 1, B - 2,. .., 2, 1. 

Alternatively, (5) may be derived by expressing +(x) and k(x) in Laurent series in 
the neighborhood of t and then equating the coefficients of the series for +(x) and 
(x - 0)0(x). Similarly, (7) and (8) may be gained by forming the Laurent series for 
+(x) and +(x) in the neighborhood of (b and then comparing the coefficients for 
the series O(x) and [(x - (b) - (a - (b)]I(x)- 

Application of Escalation. Consider the proper rational function given by 

(9) (s) Nj(s) D Do(s) ' 

where 
n-i 

(10) Nn(s)= E bis' 
i=O 

and 
n q 

(11) Dn (S) = I (s -s S= II (S - ai) m' 
j=1 j=1 

The numerator Nn(s) is a polynomial whose degree is no greater than (n - 1). The 
denominator Dn(s) is a polynomial of degree n and has been assumed to be monic 
(that is, the coefficient of Sn has been taken to be unity). The distinct zeros of Dn 
are a,, a29 ... aq which occur with multiplicities MI, M2, .w. oc Mq, respectively. 

The complete list of the zeros of Dn(s) is S1, S29 . . . 9 sn, where it is convenient, but 
not necessary, to arrange the list so that the first Ml items all equal a,, the next M2 
items all equal a2, and so forth until the final Mq items all equal aq. In the event 
that the given denominator polynomial is not monic, one may first find the partial 



FRACTION EVALUATION BY AN ESCALATION TECHNQUE 243 

fraction coefficients for the monic case and then divide all of these coefficients by 
the actual coefficient of Sn in order to get the desired partial fraction coefficients 
for the nonmonic case. 

The numerator may be written using Newton's interpolation formula as 

n-I i 

(12) Nn (s) = Po + E, A 11 (s- sj), 
i=1 j=1 

where the /8 coefficients may be found using Homer's scheme. The details of this 
calculation will be illustrated later. Upon defining NO(s) = 0, DO(s) = 1, and 

r-I i 
8 + A /3, II (s - sj) 

(13) Fr(s) = ( - = 1,2,..., n, 

II (S -sj) 
j=l 

one obtains 

(14) F,(s)= r-1(s) + I, r = 1,2,., n. 
(s SSr) (S-Sr) 

All of the Fr(s) thus defined are proper rational functions and hence have partial 
fraction expansions. 

The immediate aim is to find the partial fraction expansion of Fr(s) from the 
corresponding expansion of Fr- I(s). If this can be accomplished, it can be repeated 
n times for r = 1, 2, . .. , n, ultimately yielding the expansion for Fn(s). 

The process of going from the partial fraction expansion of Fr> (s) to that of 
Fr(s) may be broken into steps. First define 

(15) F,F(s) =r = 1,2,..., n, 

and note that, if the expansion of Fr, (s) is known, with the exception of the first 
native coefficient, all of the partial fraction cofficients of Fr(s) may be found by 
properly invoking the notions embodied in (5), (7), and (8). Then, according to (14), 

fir- 1/(s - sr) is added to the foregoing result. This addition causes the alteration 
of only one coefficient in Fr(s) as compared to Fr(s). That altered coefficient is the 
same initial native coefficient for which the method of escalation sheds no light. 
Thus, the escalation policy as given by (5), (7), and (8) is sufficient to transform the 
coefficients of Fr -(s) into all but one of the coefficients of Fr(s). The remaining 
initial native coefficient of Fr(s) may be found using the fact that the sum of the 
residues of any rational function, whose denominator degree exceeds its numerator 
degree by two or more, is zero [1]. Since Fr_ is a proper rational function, this 
applies to Fr(s) and by (14) it is concluded that the residue sum of Fr(s) is 3r- 1i 

Inspection of (13) reveals that the denominator of Fr- 1(s) must be augmented by 
the factor (s - sr) in order to arrive at the denominator of Fr(s). Upon identifying 
a, 1 < a < q, such that sr = a., one may write the partial fraction expansion of 
Fr(s) as 

LW) B(r) q Li ) B@) 
(16) F (s ) ( a) + E= j I, < r < n. 

j=1 (S -Caa . i==l (s - ciy 
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The L (r), k = 1, 2, . . ., q, are integers which represent the multiplicities of the 
factors (s - ok) in the denominator of Fr(s); they sum to r and are bounded in 
accordance with, 0 < L(r) < Mk. During the escalation process the multiplicities 
change one at a time so that 

(17) L(r-l) + 1 = L(r Sr = aa 1 ? a < q, 

and 

(18) L(rl) - L(r) i = 1, 2, . .. , q, i # a. 

The process comes to completion when r = n and L(n) = Mk, k = 1, 2,... , q. 
In (16) one may identify those coefficients represented by B) as being the alien 

coefficients, and those written as B(J) as the native coefficients. The alien coeffi- 
cients of Fr(s) may be formed from their counterparts in Fr- (s) by applying (7) 
and (8) which are now recast as 

(19) B() j = L 1 

I a~, jLr>1 
and 

B(k 1)- B(r) 
(20) B$J - , j = L) 1, ..., 2, 1. 

In (19) and (20), i = 1, 2, ... , q, i #-( a, where a is found from Sr = aa. The native 

coefficients of (16) may be calculated from (5) and from the notion that the residue 
sum is fr-i. The resultant equations are 

q 

(21) B(arl) = Pr_-E B (r) 
i=lI 

and 

(22) B(r) = B[J ? j = 2, 3, . .. L() 

For each value of r, starting with r = 1, (19), (20), (21), and (22) are used in that 
order. Coefficients not previously found are taken to be zero. 

Illustration of the Method. For a more concrete presentation, attention is directed 
to the finding of the partial fraction expansion of 

(23) F(s) = 1 + 2s + 3S2 + 4s3 + 5s4 + 6s5 N6(s) 
24 - 104s + 182s2 - 164s3 + 80s4 - 20s5 + 2s6 2D6(s) 

In a separate (and by no means trivial) calculation it may be found that: a, = 1, 

Ml = 3; a2 = 2, M2 = 2; 03 = 3, M3 = 1. This means that the complete list of 
zeros of D6(s) is: 1, 1, 1, 2, 2, 3. The /8 values may be found by Homer's scheme, 
which involves the repeated use of synthetic division using the complete list of 
zeros of D6(s) as divisors. The initial dividend is the coefficients of N6(s) and the 
remainders are the /B coefficients The process in abbreviated form is now shown. 
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11 [6 5 4 , 3 , 2 , 1] 

11 [6 , 11 , 15 , 18 , 20] 21 
11 [6 , 17 , 32 , 50] 70 
21 [6 , 23 , 55] 105 
21 [6 , 35] 125 
31 [6] 47 

6 

It may be verified that 

(24) N6(s) = 21 + 70(s - 1) + 105(s - 1)2 + 125(s - 1)3 

+47(s - 1)3(s - 2) + 6(s - 1)3(s - 2)2. 

Next, use is made of the tableau given in Figure 1. 

(j=1) (j=2) (j=3) (j=1) (j=2) (j=1) 

B(r B( B (r Br B () B() 
11 12 13 21 22 31 rI 1 

r=1 0 

Nat ive 

coeffi iients 
M -3 : r=2 use (21) lnd (22) 1 
(Q=1) 

r=3 L ith a=l l l 

M =2 - r=4 Ali+ coeffici?nts Native 3 

(a=2) use (19) and (20)1 with coefficients 

r= 5 us e (21) and (22) 
r=5 ~~~~~~~~withla=22 

A cloefficients Alien coef2ficients Native 
3=1 r=6 use (l'') and (20) with use (19) dnd (20) se (21) 5 

(=3) ( _ _o_=3, i=l I with -=13, i=2 wt=3 

M1=3 M2=2 M3=1 

(i=l) (i=2) (i=3) 

FIGURE 1 

Tableau used in computing the k) coefficients 

The blank spaces in each row of Figure 1 represent locations where the partial 
fraction coefficients of Fr(s), r = 1, 2, . .. , 6, are to be placed. The tableau is to be 
filled in from the top to the bottom,with each successive row being computed from 
the row above and from the /3 coefficient to the right of the row in question. In 

particular, those regions labeled alien coefficients are to be filled in using (19) and 
(20), while the native coefficients are formed using (21) and (22). 
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Omitting the details of the calculation, the entries in the tableau are: 

21 21 
70 21 70 

105 70 21 105 
-196 -91 -21 321 125 

308 112 21 -261 321 47 
1477 245 - 21 -60 -321 2005 6 

8 4 -62-21 8 

Since the denominator of F(s) is not monic (the coefficient of S6 is 2), all of the 
partial fraction coefficients of the last row of the tableau must be divided by 2. The 
resultant partial fraction expansion becomes 

1477 245 21 321 2005 

(25) F(s)= 16 + 8 + 4 + -30 + 2 + 16 
(s-i (- 1)2( (s-_ 1)3 (s -2) (s -2)2 (s -3)' 

Operation Count. In order to compare the efficiency of a method it is useful to 
have an expression for the number of multiplications and divisions required, the 
assumption being made that additions and subtractions are less troublesome. Let m 
(< n) be the degree of the numerator. In order to find the ,B coefficients, 
(m)(m + 1)/2 multiplications are required when Homer's scheme is used. From 
(21) and (22) it is seen that the native coefficients require no multiplications or 
divisions. According to (19) and (20), there is one division for each of the 
n2/2 - S/2 alien coefficients, where 

(26) S = M2 + M22 + ... +M2 

In the nonmonic case n additional division are required. The total operations count 
becomes 

n2 +n_S (m)(m + 1) 
-+ n - + 

2 2 2 

The last term may range from zero when m = 0, up to (n)(n - 1)/2 when 
m = n - 1. Hence, the operations count varies from a low value of n2/2 + n - 

S/2 to a high value of n2 + n/2 - S/2. 
Henrici [2] gives the operations count for his method B as being less than 

2n2 + S. The present author reanalyzed the method and, under the assumption 
that (n + 1) > 2Mj, i = 1, 2, ... , q, found that the low value for the operations 
count (for m = 0) is 2n2 + n - 2S and the high value (for m = n - 1) is 3n2 + in 
-2 S. Although a definitive comparison of the operations counts given above is 
difficult, it appears that the escalation method requires fewer than half as many 
multiplications and divisions as does method B of Henrici. 
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